If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+4x+2=0
a = -16; b = 4; c = +2;
Δ = b2-4ac
Δ = 42-4·(-16)·2
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*-16}=\frac{-16}{-32} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*-16}=\frac{8}{-32} =-1/4 $
| 8z+10+10=5z–10 | | 2x-4(x-3)=-8+3x-10 | | x2=25/529 | | -4n(2n-5)=-28 | | 9+7t=8t | | 59+30a=125 | | 10x=36+x | | 6x+2x=11 | | 4+x=1/20 | | 11x/10-11=x/5+7 | | 5.6+r=3/8 | | 4x+8x-76=38-7x | | 3x-4+2x+1+3x-4+2x+1=74 | | 5x-7=9x-35 | | 2(7-2x)=2+8x | | (3x-12)+6x-10=68 | | 4y−1=17 | | -2(x+8)=-7x-6 | | 12+0.36x=20.05 | | -4c–10–4c=8–6c | | y=3=-y+9 | | 11x/20-11=x/5+31 | | 3(x=4)=4x-13 | | -7d=-10d+9 | | 6=2n-8; | | -8+3n=6+5n | | -6x+5=-8x-12 | | 7v-43=-8(v-4) | | 10+4c=5c+2 | | -4x-23=-3(3x+3)-4 | | -4(w+3)=9w+1 | | 7+41=12x-7 |